Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Med (Lausanne) ; 8: 687220, 2021.
Article in English | MEDLINE | ID: covidwho-1291017

ABSTRACT

Purpose: The coronavirus disease (COVID-19) pandemic poses a global threat, and identification of its prognostic biomarkers could prove invaluable. Fibrinogen (FIB) could be one such indicator as coagulation and fibrinolysis abnormalities are common among COVID-19 patients. We examined the role of FIB levels in the prognosis of COVID-19. Methods: This retrospective cohort study enrolled 1,643 COVID-19 patients from the Leishenshan Hospital in Wuhan, China. The follow-up was conducted from February 8, 2020 to April 15, 2020. The cohort was divided into three groups according to the FIB level on admission, and associations with mortality and disease severity were determined using Cox and logistic regression analyses, respectively. Further, Kaplan-Meier (K-M) analyses by log-rank tests were used to assess the survival of patients with varying FIB levels. Results: Patients with FIB < 2.2 g/L [hazard ratio (HR): 9.02, 95% confidence interval (CI): 1.91-42.59, P = 0.006] and >4.2 g/L (HR: 4.79, 95% CI: 1.14-20.20, P = 0.033) showed higher mortality risks compared to those with FIB between 2.2 and 4.2 g/L. The survival curves showed similar results in K-M analyses (P < 0.001). Additionally, an elevated FIB level was associated with a greater risk of developing critical disease (odds ratio: 2.16, 95% CI: 1.04-4.46, P = 0.038) than a FIB level within the normal range. Conclusion: Abnormal FIB levels may be associated with mortality risk among COVID-19 patients and could predict critical disease development. Thus, assessment of FIB levels may assist in determining the prognosis of COVID-19 patients.

2.
Front Pharmacol ; 12: 587816, 2021.
Article in English | MEDLINE | ID: covidwho-1172974

ABSTRACT

Background: Coronavirus disease- (COVID-19-) related renal function abnormality is associated with poor prognosis. However, the clinical significance of dynamic changes in renal function indicators has not been studied, and no studies have evaluated the renal function in COVID-19 patients by cystatin C. Objective: This study aimed to evaluate the effect of abnormal renal function on admission on prognosis of COVID-19 patients and the prognostic value of various renal function indicators. Methods: A total of 1,764 COVID-19 patients without a history of chronic kidney disease were categorized into two groups, an elevated cystatin C group and a normal cystatin C group, based on the results of renal function tests on admission. The clinical characteristics were compared between the two groups, and logistic or Cox regression analyses were performed to explore the associations between elevated cystatin C/serum creatinine levels and disease severity and survival. We also performed receiver operating characteristic (ROC) curve, Kaplan-Meier survival, and curve fitting analyses. Results: When adjusted for several significant clinical variables, elevated cystatin C levels on admission were independent predictors of disease severity (p < 0.001), and elevated creatinine levels were independent predictors of death (p = 0.020). Additionally, the ROC curve analysis shows that elevated cystatin C levels [area under the curve (AUC): 0.656] have a better predictive value for disease severity than elevated creatinine levels (AUC: 0.540). The survival curves of patients with elevated cystatin C/creatinine levels show a sharper decline than those of patients with normal cystatin C/creatinine levels (p < 0.001). The curve fitting analysis revealed that, compared to the flat curves of cystatin C and creatinine levels for patients who survived, the curves for patients who died kept rising, and cystatin C levels rose above the normal range earlier than creatinine. Conclusions: Elevated cystatin C, which occurs earlier than serum creatinine, is useful for the early detection of renal function abnormality and might have better predictive value for disease severity in COVID-19 patients, while elevated serum creatinine may have a better predictive value for risks of death.

3.
ESC Heart Fail ; 8(1): 644-651, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064351

ABSTRACT

AIMS: Many studies have explored the clinical characteristics of patients with coronavirus disease (COVID-19), especially patients with cardiovascular disease. However, associated mechanisms and markers remain to be further investigated. This study aimed to investigate the effect of α-hydroxybutyrate dehydrogenase (α-HBDH) levels on disease progression and prognosis of patients with COVID-19. METHODS AND RESULTS: One thousand seven hundred and fifty-one patients from the Leishenshan hospital in Wuhan were divided into elevated and normal groups by α-HBDH level, and the clinical information between the two groups was compared retrospectively. The main outcome evaluation criteria included in-hospital death and disease severity. Univariate and multivariate regression analyses, survival curves, logistic regression, and receiver operating characteristic curve models were performed to explore the relationship between elevated α-HBDH and the two outcomes. Besides, curve fitting analyses were conducted to analyse the relationship between computed tomography score and survival. Among 1751 patients with confirmed COVID-19, 15 patients (0.87%) died. The mean (SD) age of patients was 58 years in normal α-HBDH group and 66 years in elevated α-HBDH group (P < 0.001). The mortality during hospitalization was 0.26% (4 of 1559) for patients with normal α-HBDH levels and 5.73% (11 of 192) for those with elevated α-HBDH levels (P < 0.001). Multivariate Cox analysis confirmed an association between elevated α-HBDH levels and higher risk of in-hospital mortality [hazard ratio: 4.411, 95% confidence interval (95% CI), 1.127-17.260; P = 0.033]. Multivariate logistic regression for disease severity and α-HBDH levels showed significant difference between both groups (odds ratio = 3.759; 95% CI, 1.895-7.455; P < 0.001). Kaplan-Meier curves also illustrated the survival difference between normal and elevated α-HBDH patients (P < 0.001). CONCLUSIONS: Our study found that serum α-HBDH is an independent risk factor for in-hospital mortality and disease severity among COVID-19 patients. α-HBDH assessment may aid clinicians in identifying high-risk individuals among COVID-19 patients.


Subject(s)
COVID-19/diagnosis , Hydroxybutyrate Dehydrogenase/blood , Aged , COVID-19/blood , COVID-19/enzymology , COVID-19/mortality , China/epidemiology , Disease Progression , Hospital Mortality , Humans , Middle Aged , Prognosis , Retrospective Studies , Risk Factors , Severity of Illness Index
4.
Front Public Health ; 8: 596168, 2020.
Article in English | MEDLINE | ID: covidwho-1055005

ABSTRACT

Background: Six months since the outbreak of coronavirus disease (COVID-19), the pandemic continues to grow worldwide, although the outbreak in Wuhan, the worst-hit area, has been controlled. Thus, based on the clinical experience in Wuhan, we hypothesized that there is a relationship between the patient's CO2 levels and prognosis. Methods: COVID-19 patients' information was retrospectively collected from medical records at the Leishenshan Hospital, Wuhan. Logistic and Cox regression analyses were conducted to determine the correlation between decreased CO2 levels and disease severity or mortality risk. The Kaplan-Meier curve analysis was coupled with the log-rank test to understand COVID-19 progression in patients with decreased CO2 levels. Curve fitting was used to confirm the correlation between computed tomography scores and CO2 levels. Results: Cox regression analysis showed that the mortality risk of COVID-19 patients correlated with decreased CO2 levels. The adjusted hazard ratios for decreased CO2 levels in COVID-19 patients were 8.710 [95% confidence interval (CI): 2.773-27.365, P < 0.001], and 4.754 (95% CI: 1.380-16.370, P = 0.013). The adjusted odds ratio was 0.950 (95% CI: 0.431-2.094, P = 0.900). The Kaplan-Meier survival curves demonstrated that patients with decreased CO2 levels had a higher risk of mortality. Conclusions: Decreased CO2 levels increased the mortality risk of COVID-19 patients, which might be caused by hyperventilation during mechanical ventilation. This finding provides important insights for clinical treatment recommendations.


Subject(s)
COVID-19/blood , Carbon Dioxide/blood , Hyperventilation/diagnosis , Respiration, Artificial/adverse effects , Aged , Biomarkers/blood , Blood Chemical Analysis , Blood Coagulation Tests , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Humans , Hyperventilation/etiology , Kaplan-Meier Estimate , Male , Middle Aged , Pneumonia, Viral/blood , Proportional Hazards Models , Retrospective Studies , Risk Factors
5.
Front Med (Lausanne) ; 7: 598870, 2020.
Article in English | MEDLINE | ID: covidwho-948038

ABSTRACT

Objectives: The coronavirus disease (COVID-19) pandemic has caused a large number of deaths. Some patients with severe or critical COVID-19 have been observed to have elevated bilirubin levels. Studies on the association of bilirubin level and mortality in patients with COVID-19 are limited. This study aimed to examine the role of bilirubin levels in COVID-19 severity and mortality. Methods: A retrospective cohort study was conducted in patients hospitalized with COVID-19 in Leishenshan Hospital in Wuhan, China. Cox regression analyses and logistic regression analyses were conducted to investigate the risks for mortality and disease severity, respectively. Kaplan-Meier analyses with log-rank tests were performed to assess the association between bilirubin level and survival. Results: In total, 1,788 patients with COVID-19 were included in the analysis. 5.8% (4/69) of patients in the elevated serum total bilirubin (STB) group died, compared to 0.6% (11/1,719) of patients in the non-elevated STB group. The median alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the elevated STB group were 29 U/L [interquartile range (IQR): 16-45 U/L] and 22 U/L (IQR: 13-37 U /L), respectively, which were significantly higher than the median ALT (median: 23, IQR: 15-37) and AST (median: 20, IQR: 16-26) activities in the non-elevated STB group (both p < 0.05). Patients with an elevated STB level showed increased mortality [hazard ratio (HR): 9.45, P = 0.002], elevated conjugated bilirubin (CB) levels (HR: 4.38, P = 0.03), and an elevated ratio of CB to unconjugated bilirubin (UCB, CB/UCB) (HR: 2.49, P = 0.01). CB/UCB was positively correlated with disease severity (odds ratio: 2.21, P = 0.01). Conclusions: COVID-19 patients with elevated STB and CB levels had a higher mortality, and CB/UCB was predictive of disease severity and mortality. Thus, it is necessary to pay special attention to COVID-19 patients with elevated bilirubin levels in clinical management.

6.
Int J Med Sci ; 17(16): 2468-2476, 2020.
Article in English | MEDLINE | ID: covidwho-827890

ABSTRACT

Rationale: Coronavirus disease 2019 (COVID-19) was first announced in Wuhan, and has rapidly evolved into a pandemic. However, the risk factors associated with the severity and mortality of COVID-19 are yet to be described in detail. Methods: We retrospectively reviewed the information of 1525 cases from the Leishenshan Hospital in Wuhan. Univariate and multivariate Cox regression analyses were generated to explore the relationship between procalcitonin (PCT) level and the progression and prognosis of COVID-19. Univariate and multivariate logistic regression analyses were performed to explore the relationship between disease severity in hospitalized patients and their PCT levels. Survival curves and the cumulative hazard function for COVID-19 progression were conducted in the two groups. To further detect the relationship between the computed tomography score and survival days, curve-fitting analyses were performed. Results: Patients in the elevated PCT group had a higher incidence of severe and critical severity conditions (P < 0.001), death, and higher computed tomography (CT) scores. There was an association between elevated PCT levels and mortality in the univariate ((hazard ratio [1], 3.377; 95% confidence interval [2], 1.012-10.344; P = 0.033) and multivariate Cox regression analysis (HR, 4.933; 95% CI, 1.170-20.788; P = 0.030). Similarly, patients with elevated PCT were more likely to have critically severe disease conditions in the univariate (odds ratio [2], 7.247; 95% CI, 3.559-14.757; P < 0.001) and multivariate logistic regression analysis (OR, 10.679; 95% CI, 4.562-25.000; P < 0.001). Kaplan-Meier curves showed poorer prognosis for patients with elevated PCT (P = 0.024). The CT score 1 for patients with elevated PCT peaked at day 40 following the onset of symptoms then decreased gradually, while their total CT score was relatively stable. Conclusion: PCT level was shown as an independent risk factor of in-hospital mortality among COVID-19 patients. Compared with inpatients with normal PCT levels, inpatients with elevated PCT levels had a higher risk for overall mortality and critically severe disease. These findings may provide guidance for improving the prognosis of patients with critically severe COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/etiology , Coronavirus Infections/mortality , Pneumonia, Viral/etiology , Pneumonia, Viral/mortality , Procalcitonin/blood , Aged , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/drug therapy , Disease Progression , Female , Hospitalization , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Prognosis , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , COVID-19 Drug Treatment
7.
Front Med (Lausanne) ; 7: 545, 2020.
Article in English | MEDLINE | ID: covidwho-802026

ABSTRACT

Objectives: An outbreak of coronavirus disease (COVID-19) in 2019 in Wuhan, China, has spread quickly worldwide. However, the risk factors associated with COVID-19-related mortality remain controversial. Methods: A total of 245 adult patients with laboratory-confirmed COVID-19 from two centers were analyzed. Chi-square, Fisher's exact, and the Mann-Whitney U-tests were used to compare the clinical characteristics between the survivors and non-survivors. To explore the risk factors associated with in-hospital death, univariable and multivariable cox regression analyses were used. Results: Of the 245 patients included in this study, 23 (9.4%) died in the hospital. The multivariate regression analysis showed increased odds of in-hospital deaths associated with age, D-dimer levels >1,000 ng/L, platelet count <125, and higher serum creatinine levels. Conclusions: We identified risk factors that show significant association with mortality in adult COVID-19 patients, and our findings provide valuable references for clinicians to identify high-risk patients with COVID-19 at an early stage.

9.
Travel Med Infect Dis ; 36: 101606, 2020.
Article in English | MEDLINE | ID: covidwho-2839
SELECTION OF CITATIONS
SEARCH DETAIL